Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584767

RESUMO

Wuhan, a highly urbanized and rapidly growing region within China's Yangtze Economic Zone, has historically been identified as a gap area for the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) based on daytime visual surveys. However, there has been a noticeable increase in porpoise sightings since 2020. This study employed passive acoustic monitoring to investigate porpoise distribution in Wuhan between 2020 and 2022. Generalized linear models were used to explore the relationship between shipping, hydrological patterns, light intensity, and porpoise biosonar activity. Over 603 days of effective monitoring, the daily positive rate for porpoise biosonar detection reached 43%, with feeding-related buzz signals accounting for 55% of all porpoise biosonar signals. However, the proportion of minutes during which porpoise presence was detected was 0.18%, suggesting that while porpoises may frequent the area, their visits were brief and mainly focused on feeding. A significant temporal trend emerged, showing higher porpoise biosonar detection during winter (especially in February) and 2022. Additionally, periods without boat traffic correlated with increased porpoise activity. Hydrological conditions and light levels exhibited significant negative correlations with porpoise activity. Specifically, porpoise sonar detections were notably higher during the night, twilight, and new moon phases. It is highly conceivable that both fishing bans and COVID-19 pandemic-related lockdowns contributed to the heightened presence of porpoises in Wuhan. The rapid development of municipal transportation and shipping in Wuhan and resulting underwater noise pollution have emerged as a significant threat to the local porpoise population. Accordingly, it is imperative for regulatory bodies to effectively address this environmental stressor and formulate targeted protection measures to ensure the conservation of the finless porpoise.

2.
Zool Res ; 44(5): 919-931, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37642009

RESUMO

Under increasing anthropogenic pressure, species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations. The critically endangered Yangtze finless porpoise ( Neophocaena asiaeorientalis asiaeorientalis), once commonly observed in the Yangtze River-Poyang Lake junction, is now rarely seen in the river-lake corridor. In this study, static passive acoustic monitoring techniques were used to detect the biosonar activities of the Yangtze finless porpoise in this unique corridor. Generalized linear models were used to examine the correlation between these activities and anthropogenic impacts from the COVID-19 pandemic lockdown and boat navigation, as well as environmental variables, including hydrological conditions and light levels. Over approximately three consecutive years of monitoring (2020-2022), porpoise biosonar was detected during 93% of logged days, indicating the key role of the corridor for finless porpoise conservation. In addition, porpoise clicks were recorded in 3.80% of minutes, while feeding correlated buzzes were detected in 1.23% of minutes, suggesting the potential existence of localized, small-scale migration. Furthermore, both anthropogenic and environmental variables were significantly correlated with the diel, lunar, monthly, seasonal, and annual variations in porpoise biosonar activities. During the pandemic lockdown period, porpoise sonar detection showed a significant increase. Furthermore, a significant negative correlation was identified between the detection of porpoise click trains and buzzes and boat traffic intensity. In addition to water level and flux, daylight and moonlight exhibited significant correlations with porpoise biosonar activities, with markedly higher detections at night and quarter moon periods. Ensuring the spatiotemporal reduction of anthropogenic activities, implementing vessel speed restrictions (e.g., during porpoise migration and feeding), and maintaining local natural hydrological regimes are critical factors for sustaining porpoise population viability.


Assuntos
COVID-19 , Toninhas , Animais , Efeitos Antropogênicos , COVID-19/epidemiologia , COVID-19/veterinária , Controle de Doenças Transmissíveis , Lagos , Pandemias , Rios , China
3.
J Acoust Soc Am ; 154(2): 1095-1105, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606354

RESUMO

Ships unintentionally radiate underwater noise mainly due to propeller cavitation under usual operations. In 2022, the International Maritime Organization started a review of the nonmandatory guidelines for the reduction of underwater radiated noise (URN) from ships. The characteristics of URN from ships have been studied for a long time, and quantitative variations in URN levels with ship size and speed have been reported. From the viewpoint of ship design, it is more reasonable that the effect of ship speed and draft is considered as the ratio to design speed and maximum draft, respectively. Therefore, in this study, underwater sound measurements were conducted in deep water (>300 m in depth) under a sea lane, and regression analysis was applied to the source levels of the URN from many merchant ships using ship length, ship speed ratio to design speed, and draft ratio to maximum draft. In this analysis, the source level is simplified based on the characteristics of URN due to propeller cavitation. This allows one coefficient to represent the approximate shape of the spectrum of URN level. Further, variations in the URN level for each ship type are discussed based on the results and comparisons with previous studies.

4.
J Acoust Soc Am ; 153(3): 1703, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37002103

RESUMO

The sound properties produced by the white-edged rockfish (Sebastes taczanowskii Steindachner, 1880) were compared with the body size. We conducted a tank experiment to compare the sound properties with body length, which ranged from 12.4 to 19.8 cm. Sound production was composed of pulses with a duration of 0.010-0.022 s and a peak frequency of 400-1000 Hz. Peak frequency decreased with fish and swim bladder size and pulse duration. The relationship between sound properties and body size may be useful for estimating the body length of the target species by using passive acoustic monitoring.


Assuntos
Bass , Perciformes , Animais , Bexiga Urinária , Som , Tamanho Corporal
6.
Sci Rep ; 12(1): 19702, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385631

RESUMO

Marine organisms inhabiting coastal waters are known to be driven by periodic cycles such as diel, tidal, and seasonal changes. Humpback whales (Megaptera novaeangliae) breed in shallow and warm coastal waters, with males singing complex songs during the breeding season. To investigate periodic variations in humpback whale singing activities, we conducted fixed passive acoustic monitoring in the Ogasawara (Bonin) Islands, Japan, from winter to spring during 2016-2018. The singing activity and individual number of singers were observed throughout the day and night using a very long baseline passive acoustic array. The occurrence of singers peaked before sunrise and in the evening and was reduced during the daytime. The frequency of song reception depended on the tidal phase. A generalised additive model demonstrated that the occurrence of singers increased during the flood tide and decreased during the ebb tide in the waters west of Chichijima Island. These results suggest that the singing behaviour of humpback whales in breeding areas is affected by the diel and tidal cycles. Male humpback whales may change their behaviour or singing location depending on the strength and direction of the tidal current, considering that the selection of a stable location is beneficial for singing whales.


Assuntos
Jubarte , Canto , Animais , Masculino , Japão , Vocalização Animal , Acústica , Cetáceos
7.
Ecotoxicol Environ Saf ; 228: 113047, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34861441

RESUMO

Highly concentrated live mass stranding events of dolphins and whales happened in the eastern coast of China between June and October 2021. The current study adopted the non-invasive auditory evoked-potential technique to investigate the hearing threshold of a stranded melon headed whale (Peponocephala electra) at a frequency range of between 9.5 and 181 kHz. It was found that, at the frequency range of from 10 to 100 kHz, hearing thresholds for the animal were between 20 and 65 dB higher than those of its phylogenetically closest species (Pygmy killer whale). The severe hearing loss in the melon headed whale was probably caused by transient intense anthropogenic sonar or chronic shipping noise exposures. The hearing loss could have been the cause for the observed temporal and spatial clustered stranding events. Therefore, there is need for noise mitigation strategies to reduce noise exposure levels for marine mammals in the coastal areas of China.

8.
Ecotoxicol Environ Saf ; 226: 112860, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624534

RESUMO

The Yangtze River exhibits a high biodiversity and plays an important role in global biodiversity conservation. As the world's busiest inland river in regard to shipping, little attention has been paid to underwater noise pollution. In 2017, the underwater noise level in 25 riverside locations along the middle and lower reaches of the Yangtze River mainly at night time were investigated by using passive acoustic monitoring method. Approximately 88% and 40% of the sampled sites exhibit noise levels exceeding the underwater acoustic thresholds of causing responsiveness and temporary threshold shift, respectively, in cetacean. Noise pollution may impose a high impact on fish with physostomous swim bladders and Weberian ossicles, such as silver carp, bighead carp, goldfish and common carp, whereas it may affect fish with physoclistous swim bladders and without Weberian ossicles, such as lake sturgeon and paddlefish, to a lesser extent. Noise levels reductions of approximately 10 and 20 dB were observed in the middle and lower reaches, respectively, of the Yangtze River over the 2012 level. The green development mode of the ongoing construction of green shipping in the Yangtze River Economic Belt, including the development of green shipping lanes, ports, ships and transportation organizations, may account for the alleviated underwater noise pollution. Follow-up noise mitigation endeavors, such as the extension of ship speed restrictions and the study and implementation of the optimal navigation speed in ecologically important areas, are required to further reduce the noise level in the Yangtze River to protect local porpoises and fish.


Assuntos
Carpas , Toninhas , Animais , Biodiversidade , China , Ruído/efeitos adversos , Rios
9.
PLoS One ; 16(2): e0246838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571306

RESUMO

Bycatch of harbour porpoises (Phocoena phocoena) by gillnets is a recognised threat to populations. To develop effective mitigation measures, understanding the mechanics of bycatch is essential. Previous studies in experimental conditions suggested foraging activity is an important factor influencing porpoises' reaction to gillnets. We acoustically observed the behaviour of wild harbour porpoises around a bottom-gillnet set-up in a commercial fishing ground, especially foraging activity. Passive acoustic event recorders (A-tags) were fixed to the ends of the gillnet, and recorded for 1 392 hours. Although harbour porpoises frequently and repeatedly appeared around the net each day, incidental bycatch occurred only three times during the observations. The stomach contents of two individuals contained mainly Ammodytes sp., which were observable around the bottom-gillnet but not targeted by the fishery. A total of 276 foraging incidents were acoustically detected, and 78.2% of the foraging activity was in the bottom layer (deeper than 25 m). Porpoises appeared around the net with more frequency on the day of a bycatch incident than on the days without bycatch. These results suggest that the harbour porpoises appeared around the bottom-gillnet to forage on fish distributed in the fishing ground, but not captured by this bottom-gillnet. Thus, porpoises face the risk of becoming entangled when foraging near a gillnet, with the probability of bycatch simply increasing with the length of time spent near the net. Bycatch mitigation measures are discussed.


Assuntos
Comportamento Apetitivo/fisiologia , Conservação dos Recursos Naturais , Comportamento Alimentar/fisiologia , Phocoena , Animais , Pesqueiros
10.
PLoS Comput Biol ; 17(2): e1008698, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600436

RESUMO

Remote acquisition of information on ecosystem dynamics is essential for conservation management, especially for the deep ocean. Soundscape offers unique opportunities to study the behavior of soniferous marine animals and their interactions with various noise-generating activities at a fine temporal resolution. However, the retrieval of soundscape information remains challenging owing to limitations in audio analysis techniques that are effective in the face of highly variable interfering sources. This study investigated the application of a seafloor acoustic observatory as a long-term platform for observing marine ecosystem dynamics through audio source separation. A source separation model based on the assumption of source-specific periodicity was used to factorize time-frequency representations of long-duration underwater recordings. With minimal supervision, the model learned to discriminate source-specific spectral features and prove to be effective in the separation of sounds made by cetaceans, soniferous fish, and abiotic sources from the deep-water soundscapes off northeastern Taiwan. Results revealed phenological differences among the sound sources and identified diurnal and seasonal interactions between cetaceans and soniferous fish. The application of clustering to source separation results generated a database featuring the diversity of soundscapes and revealed a compositional shift in clusters of cetacean vocalizations and fish choruses during diurnal and seasonal cycles. The source separation model enables the transformation of single-channel audio into multiple channels encoding the dynamics of biophony, geophony, and anthropophony, which are essential for characterizing the community of soniferous animals, quality of acoustic habitat, and their interactions. Our results demonstrated the application of source separation could facilitate acoustic diversity assessment, which is a crucial task in soundscape-based ecosystem monitoring. Future implementation of soundscape information retrieval in long-term marine observation networks will lead to the use of soundscapes as a new tool for conservation management in an increasingly noisy ocean.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Oceanos e Mares , Som , Acústica , Animais , Biodiversidade , Cetáceos/fisiologia , Biologia Computacional , Conservação dos Recursos Naturais , Peixes/fisiologia , Ruído , Taiwan , Vocalização Animal
11.
Artigo em Inglês | MEDLINE | ID: mdl-32448998

RESUMO

Hearing is considered the primary sensory modality of cetaceans and enables their vital life functions. Information on the hearing sensitivity variability within a species obtained in a biologically relevant wild context is fundamental to evaluating potential noise impact and population-relevant management. Here, non-invasive auditory evoked-potential methods were adopted to describe the audiograms (11.2-152 kHz) of a group of four wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis) during a capture-and-release health assessment project in Poyang Lake, China. All audiograms presented a U shape, generally similar to those of other delphinids and phocoenids. The lowest auditory threshold (51-55 dB re 1 µPa) was identified at a test frequency of 76 kHz, which was higher than that observed in aquarium porpoises (54 kHz). The good hearing range (within 20 dB of the best hearing sensitivity) was from approximately 20 to 145 kHz, and the low- and high-frequency hearing cut-offs (threshold > 120 dB re l µPa) were 5.6 and 170 kHz, respectively. Compared with aquarium porpoises, wild porpoises have significantly better hearing sensitivity at 32 and 76 kHz and worse sensitivity at 54, 108 and 140 kHz. The audiograms of this group can provide a basis for better understanding the potential impact of anthropogenic noise.


Assuntos
Audição/fisiologia , Ruído/efeitos adversos , Toninhas/fisiologia , Animais , Limiar Auditivo , Potenciais Evocados Auditivos
12.
Environ Pollut ; 262: 114310, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155559

RESUMO

Underwater sound plays an important role in some critical life functions of many aquatic animals. Underwater noise pollution has received relatively more attention in ocean systems. However, little attention has been paid to freshwater systems, such as the Yangtze River which is the habitat of critically endangered Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis). In 2012, the underwater noise levels in 25 sites along the middle and lower sections of the Yangtze River were measured. The root mean square sound pressure level (SPL) and unweighted sound exposure level (SEL) at each site ranged between 105 ± 2.4 (median ± quartile deviation) and 150 ± 5.5 dB. Obvious spatial and temporal variations in the SPL were detected among the 25 sites. The SPL and SEL in the middle section of the Yangtze River were smaller (approximately 15 dB) and fluctuated more compared to those in the lower section. The power spectrum in the mainstem was site specific. However, all the spectra levels were higher than the audiogram of Yangtze finless porpoises. Majority of the sites had an averaged cumulative unweighted SEL (72%) and cumulative weighted SEL (68%) that surpassed the underwater acoustic thresholds for onset of hearing temporal threshold shifts for finless porpoise. Porpoise bio-sonars were detected in 89% of sonar monitoring sites indicating that noise pollution in the Yangtze River greatly threatened porpoise survival. In 8% of the sites, the averaged cumulative weighted SEL exceeded that of underwater acoustic thresholds causing non-recoverable permanent threshold shifts of finless porpoises auditory system whereas it was less than 1 dB below the underwater acoustic thresholds in other 8% of the sites. These sites urgently needed noise mitigation and management strategies. These results will facilitate the evaluation of the impacts of anthropogenic noise pollution on local finless porpoises and give further guidelines on its effective conservation.


Assuntos
Toninhas , Animais , China , Ruído , Rios , Som
13.
Trends Ecol Evol ; 34(12): 1066-1069, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31708125

RESUMO

Targets of deep-sea mining commonly coincide with biodiversity hotspots, such as hydrothermal vents. The resilience of these ecosystems relies on larval dispersal, which may be directed by habitat-specific soundscapes. We urge for a global effort to implement soundscape as a conservation tool to assess anthropogenic disruption to deep-sea benthic ecosystems.


Assuntos
Ecossistema , Fontes Hidrotermais , Biodiversidade
14.
PLoS One ; 14(2): e0211138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30721236

RESUMO

Central place foraging theory (CPF) has been used to predict the optimal patch residence time for air-breathing marine predators in response to patch quality. Humpback whales (Megaptera novaeangliae) forage on densely aggregated prey, which may induce drastic change in prey density in a single feeding event. Thus, the decision whether to leave or stay after each feeding event in a single dive in response to this drastic change, should have a significant effect on prey exploitation efficiency. However, whether humpback whales show adaptive behavior in response to the diminishing prey density in a single dive has been technically difficult to test. Here, we studied the foraging behavior of humpback whales in response to change in prey density in a single dive and calculated the efficiency of each foraging dive using a model based on CPF approach. Using animal-borne accelerometers and video loggers attached to whales, foraging behavior and change in relative prey density in front of the whales were successfully quantified. Results showed diminishing rate of energy intake in consecutive feeding events, and humpback whales efficiently fed by bringing the rate of energy intake close to maximum in a single dive cycle. This video-based method also enabled us to detect the presence of other animals around the tagged whales, showing an interesting trend in behavioral changes where feeding duration was shorter when other animals were present. Our results have introduced a new potential to quantitatively investigate the effect of other animals on free-ranging top predators in the context of optimal foraging theory.


Assuntos
Comportamento Alimentar/fisiologia , Jubarte/fisiologia , Comportamento Predatório/fisiologia , Aceleração , Animais , Mergulho/fisiologia , Ingestão de Energia , Euphausiacea , Cadeia Alimentar , Islândia , Modelos Biológicos , Densidade Demográfica , Tecnologia de Sensoriamento Remoto , Frutos do Mar , Gravação em Vídeo
15.
Mar Pollut Bull ; 140: 509-522, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803672

RESUMO

Soundscapes are vital to acoustically specialized animals. Using passive acoustic monitoring data, the temporal and spectral variations in the soundscape of a Chinese white dolphin hotspot were analyzed. By cluster analysis, the 1/3 octave band power spectrum can be grouped into three bands with median overall contribution rates of 35.24, 14.14 and 30.61%. Significant diel and tidal soundscape variations were observed with a generalized linear model. Temporal patterns and frequency ranges of middle frequency band sound matched well with those of fish vocalization, indicating that fish might serve as a signal source. Dolphin sounds were mainly detected in periods involving low levels of ambient sound and without fish vocalization, which could reflect noise avoidance and passive eavesdropping behaviors engaged in by the predator. Pre-construction data can be used to assess the effects of offshore windfarms on acoustic environments and aquatic animals by comparing them with the soundscape of postconstruction and/or postmitigation.


Assuntos
Indústria da Construção , Golfinhos/fisiologia , Ecolocação/fisiologia , Monitoramento Ambiental/métodos , Estuários , Ruído , Acústica , Animais , Aprendizagem da Esquiva/fisiologia , China , Ruído/efeitos adversos , Rios , Som , Espectrografia do Som
16.
J Acoust Soc Am ; 144(5): 2709, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30522274

RESUMO

This paper presents a method for automatic detection of fish sounds in an underwater environment. There exist two difficulties: (i) features and classifiers that provide good detection results differ depending on the underwater environment and (ii) there are cases where a large amount of training data that is necessary for supervised machine learning cannot be prepared. A method presented in this paper (the proposed hybrid method) overcomes these difficulties as follows. First, novel logistic regression (NLR) is derived via adaptive feature weighting by focusing on the accuracy of classification results by multiple classifiers, support vector machine (SVM), and k-nearest neighbors (k-NN). Although there are cases where SVM or k-NN cannot work well due to divergence of useful features, NLR can produce complementary results. Second, the proposed hybrid method performs multi-stage classification with consideration of the accuracy of SVM, k-NN, and NLR. The multi-stage acquisition of reliable results works adaptively according to the underwater environment to reduce performance degradation due to diversity of useful classifiers even if abundant training data cannot be prepared. Experiments on underwater recordings including sounds of Sciaenidae such as silver croakers (Pennahia argentata) and blue drums (Nibea mitsukurii) show the effectiveness of the proposed hybrid method.


Assuntos
Peixes/fisiologia , Perciformes/fisiologia , Som/efeitos adversos , Telecomunicações/instrumentação , Algoritmos , Animais , Modelos Logísticos , Reconhecimento Automatizado de Padrão/métodos , Espectrografia do Som/métodos , Máquina de Vetores de Suporte
17.
PLoS One ; 13(10): e0204112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356328

RESUMO

Reactions of singing behavior of individual humpback whales (Megaptera novaeangliae) to a specific shipping noise were examined. Two autonomous recorders separated by 3.0 km were used for the acoustic monitoring of each individual song sequence. A passenger-cargo liner was operated once per day, and other large ship noise was excluded given the remote location of the Ogasawara Islands, 1000 km south of Tokyo. In total, locations of between 26 and 27 singers were measured acoustically using time arrival difference at both stereo recorders on the ship presence and absence days, respectively. Source level of the ship (157 dB rms re 1µPa) was measured separately in deep water. Fewer whales sang nearby, within 500 m, of the shipping lane. Humpback whales reduced sound production after the ship passed, when the minimum distance to the whale from the ship trajectory was 1200 m. In the Ogasawara water, humpback whales seemed to stop singing temporarily rather than modifying sound characteristics of their song such as through frequency shifting or source level elevation. This could be a cost effective adaptation because the propagation loss at 500 m from the sound source is as high as 54 dB. The focal ship was 500 m away within several minutes. Responses may differ where ship traffic is heavy, because avoiding an approaching ship may be difficult when many sound sources exist.


Assuntos
Jubarte/fisiologia , Ruído/efeitos adversos , Vocalização Animal/fisiologia , Acústica , Animais , Aprendizagem da Esquiva , Feminino , Masculino , Navios
18.
J Acoust Soc Am ; 143(4): EL278, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29716292

RESUMO

Passive acoustics has been used to investigate behavior and relative abundances of soniferous fish. However, because of noise interferences, it remains challenging to accurately analyze acoustic activities of soniferous fish. This study proposes a multi-method approach, which combines rule-based detector, periodicity-coded non-negative matrix factorization, and Gaussian mixture models. Although the three methods performed well when used to detect croaker choruses in quiet conditions, inconsistent results are observed in noisy conditions. A consistency matrix can provide insights regarding the bias of acoustic monitoring results. The results suggest that the proposed approach can reasonably improve passive acoustic monitoring of soniferous fish.


Assuntos
Algoritmos , Monitoramento Ambiental/métodos , Peixes/fisiologia , Modelos Biológicos , Vocalização Animal , Acústica , Animais , Ruído
19.
Curr Biol ; 27(21): R1154-R1155, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29112865

RESUMO

Many previous studies have shown that rorqual whales (Balaenopteridae), including the blue whale (Balaenoptera musculus), fin whale (B. physalus), sei whale (B. borealis), Bryde's whale (B. edeni), minke whale (B. acutorostrata), and humpback whale (Megaptera novaeangliae), employ a strategy called lunge feeding to capture a large amount of krill and/or fish for nourishment [1]. Lunge feeding entails a high energetic cost due to the drag created by an open mouth at high speeds [1,2]. In the upper Gulf of Thailand, Bryde's whales, which feed on small fish species [3], predominantly anchovies, demonstrated a range of feeding behaviors such as oblique, vertical, and lateral lunging. Moreover, they displayed a novel head-lifting feeding behavior characterized by holding the vertical posture for several seconds with an open mouth at the water surface. This study describes the head-lifting feeding by Bryde's whales, which is distinct from the typical lunge feeding of rorqual whales. Whales showing this behavior were observed on 58 occasions, involving 31 whales and including eight adult-calf pairs. Whales caught their prey using a series of coordinated movements: (i) lifting the head above the water with a closed mouth, (ii) opening the mouth until the lower jaw contacted the sea surface, which created a current of water flowing into the mouth, (iii) holding their position for several seconds, (iv) waiting for the prey to enter the mouth, and (v) closing the mouth and engulfing the prey underwater (Figure 1A-F, Movie S1 in Supplemental Information published with this article online). When a whale kept its upper jaw above the sea surface, many anchovies in the targeted shoal appeared to lose orientation and flowed passively into the mouth of the whale by the current created by the lower mandible breaking the surface of the water. We measured the duration of feeding events when the whales had a wide-open mouth mostly above the sea surface. The mean and maximum feeding durations were 14.5 ± 5.4 (SD; n = 58 events) and 32 s, respectively. Deployment of animal-borne data loggers yielded approximately 44 minutes of recordings from a single whale. The acceleration data showed that stroke rates, including tail beat and whole-body movements during feeding, were faster (approximately 0.7 s cycle) than during a cruising swim (approximately 3 s cycle) (Figure 1G). The swimming speed was lower than that in the stall speed (0.2 m s-1) of the device during the feeding phase, suggesting that thrust force was used to hold the head up and to stabilize body posture (Figure 1G). Stable positioning using the fluke and flipper was confirmed by video data for both the downward and upward direction of the whale (Figure S1). According to the visual and behavioral data, we named the head-lifting feeding as 'tread-water feeding'. Generally, all species of baleen whale, including rorqual whales, show active chasing and feeding, i.e., skimming, suction, and engulfing with lunging [1]. Tread-water feeding is considered passive feeding as compared with other feeding behaviors because the whales do not swim forward in pursuit of prey during the period from mouth opening to closing, and although they need thrust force to stabilize their posture, the head does not actively move. To the best of our knowledge, this discovery of tread-water feeding in Bryde's whales represents the first report of passive feeding in baleen whales, which indicates their flexible capacity to modify their foraging strategy in relation to variable environments.


Assuntos
Balaenoptera/fisiologia , Comportamento Alimentar/fisiologia , Animais , Metabolismo Energético/fisiologia , Euphausiacea , Modelos Biológicos
20.
PeerJ ; 5: e3924, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085746

RESUMO

BACKGROUND: Repetitive species-specific sound enables the identification of the presence and behavior of soniferous species by acoustic means. Passive acoustic monitoring has been widely applied to monitor the spatial and temporal occurrence and behavior of calling species. METHODS: Underwater biological sounds in the Pearl River Estuary, China, were collected using passive acoustic monitoring, with special attention paid to fish sounds. A total of 1,408 suspected fish calls comprising 18,942 pulses were qualitatively analyzed using a customized acoustic analysis routine. RESULTS: We identified a diversity of 66 types of fish sounds. In addition to single pulse, the sounds tended to have a pulse train structure. The pulses were characterized by an approximate 8 ms duration, with a peak frequency from 500 to 2,600 Hz and a majority of the energy below 4,000 Hz. The median inter-pulsepeak interval (IPPI) of most call types was 9 or 10 ms. Most call types with median IPPIs of 9 ms and 10 ms were observed at times that were exclusive from each other, suggesting that they might be produced by different species. According to the literature, the two section signal types of 1 + 1 and 1 + N10 might belong to big-snout croaker (Johnius macrorhynus), and 1 + N19 might be produced by Belanger's croaker (J. belangerii). DISCUSSION: Categorization of the baseline ambient biological sound is an important first step in mapping the spatial and temporal patterns of soniferous fishes. The next step is the identification of the species producing each sound. The distribution pattern of soniferous fishes will be helpful for the protection and management of local fishery resources and in marine environmental impact assessment. Since the local vulnerable Indo-Pacific humpback dolphin (Sousa chinensis) mainly preys on soniferous fishes, the fine-scale distribution pattern of soniferous fishes can aid in the conservation of this species. Additionally, prey and predator relationships can be observed when a database of species-identified sounds is completed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...